Additive-multiplicative magic squares, 10th-order and above
After additive-multiplicative magic squares of orders 8-9 (also called addition-multiplication magic squares, or even shorter "add-mult"), what about bigger squares?
Here is his best add-mult magic square of order 10:
165 |
1599 |
1890 |
9520 |
8424 |
648 |
560 |
4914 |
3315 |
6765 |
6426 |
9360 |
216 |
2255 |
1365 |
3549 |
4675 |
8856 |
720 |
378 |
2952 |
1925 |
4641 |
6318 |
240 |
9840 |
486 |
273 |
5005 |
6120 |
4563 |
162 |
3280 |
2520 |
6545 |
385 |
6552 |
6800 |
6642 |
351 |
2800 |
8568 |
6435 |
117 |
2214 |
4590 |
4797 |
495 |
504 |
7280 |
1400 |
5712 |
7605 |
243 |
2706 |
5610 |
9963 |
585 |
336 |
3640 |
9477 |
198 |
1640 |
1680 |
7735 |
455 |
4368 |
3400 |
8118 |
729 |
1968 |
2275 |
9639 |
7722 |
120 |
4920 |
594 |
567 |
5915 |
4080 |
7854 |
4680 |
144 |
2665 |
2835 |
7371 |
5525 |
5904 |
360 |
462 |
195 |
3321 |
2310 |
4760 |
5616 |
432 |
280 |
6006 |
6885 |
7995 |
And here is an example of my add-mult magic squares:
1 |
496 |
148 |
130 |
246 |
159 |
357 |
86 |
285 |
540 |
406 |
484 |
276 |
793 |
531 |
400 |
220 |
116 |
432 |
19 |
50 |
413 |
183 |
138 |
286 |
518 |
620 |
15 |
688 |
459 |
689 |
492 |
510 |
645 |
451 |
742 |
481 |
312 |
16 |
558 |
472 |
25 |
115 |
244 |
87 |
264 |
38 |
378 |
854 |
253 |
375 |
590 |
486 |
304 |
528 |
377 |
212 |
205 |
43 |
408 |
434 |
2 |
156 |
111 |
108 |
133 |
132 |
174 |
305 |
92 |
200 |
59 |
992 |
9 |
338 |
444 |
583 |
574 |
430 |
765 |
222 |
78 |
7 |
124 |
51 |
344 |
164 |
265 |
348 |
572 |
171 |
864 |
885 |
250 |
322 |
671 |
225 |
944 |
732 |
299 |
616 |
319 |
810 |
190 |
301 |
102 |
318 |
123 |
104 |
185 |
62 |
8 |
533 |
636 |
816 |
387 |
10 |
930 |
407 |
364 |
69 |
366 |
118 |
175 |
152 |
54 |
145 |
176 |
416 |
333 |
806 |
12 |
473 |
714 |
530 |
615 |
88 |
203 |
162 |
114 |
125 |
236 |
488 |
23 |
228 |
702 |
261 |
704 |
345 |
610 |
826 |
275 |
6 |
186 |
259 |
52 |
41 |
424 |
204 |
215 |
371 |
82 |
258 |
153 |
248 |
5 |
26 |
296 |
549 |
368 |
300 |
767 |
756 |
209 |
660 |
290 |
177 |
150 |
46 |
427 |
232 |
44 |
95 |
216 |
663 |
516 |
656 |
477 |
370 |
390 |
11 |
868 |
435 |
440 |
266 |
594 |
708 |
325 |
207 |
976 |
37 |
208 |
4 |
310 |
306 |
129 |
287 |
106 |
682 |
14 |
260 |
555 |
848 |
369 |
559 |
612 |
270 |
76 |
352 |
29 |
122 |
161 |
75 |
354 |
184 |
61 |
295 |
100 |
57 |
324 |
58 |
308 |
410 |
795 |
561 |
602 |
13 |
744 |
592 |
234 |
172 |
255 |
53 |
328 |
182 |
74 |
372 |
3 |
350 |
649 |
915 |
230 |
396 |
464 |
648 |
247 |
Table of best known add-mult magic squares
In this Dénes - Keedwell book, Horner's 8x8 and 9x9 add-mult squares are published on pages 215-216 (or pages 221-222 in the second edition of 2015) and the above quoted problem 6.3 is posed. I do not have the full answer to this Dénes - Keedwell - Erdös problem, but here is a partial answer with a summary of the best known add-mult magic squares that you can download with the Excel file below. When their book was published, only orders 8 and 9 were known. We can note below that orders p (where p is a prime) are difficult to get, but not impossible, as proved by Toshihiro Shirakawa with p = 11, 13, 17, 19.
Order (*) |
Square |
S |
P |
MaxNb |
(**) |
3..7 |
See here |
||||
8 |
Magic (see here) |
600 |
5.14E+13 |
225 |
2 |
9 |
Magic (see here) |
784 |
2.99E+15 |
261 |
2 |
10 (S) |
Magic |
37800 |
1.60E+33 |
9963 |
1 |
11 (S) |
Magic |
1034 |
4.68E+19 |
238 |
1 |
12 (S') |
Magic |
1343 |
3.23E+22 |
276 |
1 |
13 (S') |
Magic |
1734 |
1.76E+25 |
350 |
2 |
14 (S') |
Magic |
2158 |
1.02E+28 |
406 |
1 |
15 (S') |
Magic |
2734 |
1.14E+31 |
465 |
1 |
16 |
Magic |
5338 |
1.61E+37 |
992 |
1 |
17 (S') |
Magic |
4101 |
1.70E+37 |
627 |
1 |
18 |
Magic |
30030 |
9.97E+52 |
5848 |
2 |
19 (S') |
Magic |
5591 |
2.02E+43 |
779 |
1 |
20 (M/B) |
Magic |
9460 |
1.77E+49 |
1743 |
2 |
21 (S') |
Magic |
7393 |
4.12E+49 |
987 |
1 |
22 (S) |
Magic |
147840 |
3.98E+78 |
23214 |
2 |
23 |
Unknown |
||||
24 (FRG) |
Magic |
55890 |
1.50E+77 |
6402 |
1 |
25 |
Magic |
25025 |
1.76E+70 |
3025 |
3 |
26 (S) |
Magic |
859248 |
1.11E+106 |
129297 |
1 |
27 |
Magic |
27888 |
7.53E+75 |
3753 |
2 |
28 |
Magic |
37200 |
4.98E+81 |
4321 |
2 |
29 |
Unknown |
||||
30 |
Magic |
53968 |
3.69E+90 |
7037 |
1 |
31 |
Unknown |
||||
32 |
Magic |
60852 |
4.97E+98 |
6400 |
1 |
1024 (***) |
Magic |
274878169600 |
9.94E+8355 |
1072694272 |
1 |
(*) All these
best known squares of orders ≥ 8 by Christian Boyer, Nov.
2005 (orders 8-9) and Jan.-Feb 2009 (orders ≥ 12)
except
(FRG) of
order
24 by Yu Fuxi - Sun Rongguo - Zhang Guiming, 1997,
except
(M/B) one
out of two of order 20 by Su Maoting, May 2006, the other one
being by Christian Boyer, Jan. 2009,
except
(S) of orders 10, 11, 22, 26 by Toshihiro Shirakawa, April-May-June
2010,
except
(S') of orders 12, 13, 14, 15, 17, 19, 21 by Toshihiro Shirakawa, April-May
2013.
(**) The smallest S, P, and MaxNb may occur separately
in 1, 2 or 3 different squares of the same order.
(***) This square
of order 1024 is only an example proving that very big orders are
possible. Other big orders are possible.
(****) If you succeed in getting a smaller
P, or a smaller S, or a smaller MaxNb, or a new order, send me a message! Your results will be added in this
website.
Return to the home page http://www.multimagie.com