Some extended searches (see formula
and list of 2008) on 3x3 magic squares of squares
by Lee Morgenstern, January 2013.
A complete enumeration of APs up to d = 2.4 x 10^19 plus a partial enumeration beyond that due to the way the scaling worked resulted in 3809 instances of 3 APs with equal d values and all odd entries.
All but the following were eliminated because either two scale factors had a prime in common or a scale factor was a multiple of an 8k+3 prime.
[d = 71831760]
2171 8749 12181
(12, 23,13)
11633 14393 16703 (77, 92,1)
25889 27241 28529
( 4,165,1)
[d = 71831760]
6227 10517 13507 (
5, 28,13)
11633 14393 16703 (77, 92,1)
25889 27241 28529 (
4,165,1)
[d = 2.75 x 10^15]
4052639 52640389
74334361 ( 6625,2958 1)
90999257 105049757
117430993 (10229, 646,1)
172113455 179937845 187435895
( 986, 21,5x37)
A complete enumeration of 3 primitive APs with equal d values resulted in only 5 instances.
[d = 52492440]
1367 7373 10337
(38, 77,1)
5521 9109 11639 (55, 78,1)
17639 19069
20399 ( 5,138,1)
[d = 8.81 x 10^12]
2987849 4211981
5153089 (2035,266,1)
10522583 10933357 11329247 (3306,
61,1)
11330639 11713109 12083479 (3422, 55,1)
[d = 1.03 x 10^13]
961241 3347261 4635119
(1610, 869,1)
6104543 6895333 7604327 (2622, 143,1)
6568753
7309493 7981783 (2002,1817,1)
[d = 3.58 x 10^13]
1647887 6203957
8617577 (2201,1166,1)
8120041 10085069 11725279 (2438,2035,1)
11258281
12748429 14081761 (3565, 198,1)
[d = 3.31 x 10^15]
10629079 58464869
81995759 ( 7238,2465,1)
60764257 83650813 101501833 (
9077,1122,1)
93079487 109402717 123588503 (10434, 731,1)
No more were found up to d = 6.4 x 10^22.
Return to the home page http://www.multimagie.com