Order 44 Hexamagic Series Impossibility Theorem. There are no order 44 hexamagic series. Proof. S1 = 42614 S2 = 55014674 S3 = 79901931824 S4 = 123784061778806 S5 = 199756507500568304 S6 = 331567221598425169214 S4 ≡ 6 (mod 16) thus a hexamagic series must have 6, 22, or 38 odd entries.
Case 1 of 3: 6 odd and 38 even entries. Let 8Aj+1 be the square of an odd entry, j=1..6. Let 4Bj be the square of an even entry, j=1..38. Let Tn = sum (Aj)n, j=1..6, n=1,2,3. Let Un = sum (Bj)n, j=1..38, n=1,2,3. S2 = 8T1 + 6 + 4U1 S4 = 64T2 + 16T1 + 6 + 16U2 S6 = 512T3 + 192T2 + 24T1 + 6 + 64U3 (S2 - 6)/4 = 2T1 + U1 = 13753667 thus U1 is odd and U2 is odd. (S4 - 6)/16 = 4T2 + T1 + U2 = 7736503861175 thus T1 is even. (S6 - 6)/8 = 64T3 + 24T2 + 3T1 + 8U3 = 41445902699803146151 thus T1 is odd. T1 can't be both even and odd.
Case 2 of 3: 6 even and 38 odd entries. Let 8Aj+1 be the square of an odd entry, j=1..38. Let 4Bj be the square of an even entry, j=1..6. Let Tn = sum (Aj)n, j=1..38, n=1,2,3. Let Un = sum (Bj)n, j=1..6, n=1,2,3. S2 = 8T1 + 38 + 4U1 S4 = 64T2 + 16T1 + 38 + 16U2 S6 = 512T3 + 192T2 + 24T1 + 38 + 64U3 (S2 - 38)/4 = 2T1 + U1 = 13753659 thus U1 is odd and U2 is odd. (S4 - 38)/16 = 4T2 + T1 + U2 = 7736503861173 thus T1 is even. (S6 - 38)/8 = 64T3 + 24T2 + 3T1 + 8U3 = 41445902699803146147 thus T1 is odd. T1 can't be both even and odd.
Case 3 of 3: 22 even and 22 odd entries. Let 2Aj+1 be an odd entry, j=1..22 Let 2Bj be an even entry, j=1..22 Let Tn = sum (Aj)n, j=1..22, n=1..6 Let Un = sum (Bj)n, j=1..22, n=1..6 S1 = 2T1 + 22 + 2U1 S2 = 4T2 + 4T1 + 22 + 4U2 S3 = 8T3 + 12T2 + 6T1 + 22 + 8U3 S4 = 16T4 + 32T3 + 24T2 + 8T1 + 22 + 16U4 S5 = 32T5 + 80T4 + 80T3 + 40T2 + 10T1 + 22 + 32U5 S6 = 64T6 + 6x32T5 + 15x16T4 + 20x8T3 + 15x4T2 + 6x2T1 + 22 + 64U6 (S2 - 22)/4 = T2 + T1 + U2 = 13753663 thus U2 is odd since T2 + T1 must be even and U1..U6 are odd. (S1 - 22)/2 = T1 + U1 = 21296 thus T1 is odd and T1..T6 are odd. Let T1 = 2z+1 Let T2 = 2w+1 Let U2 = 2v+1 (S5 - 22)/2 = 16T5 + 40T4 + 40T3 + 20(2w+1) + 5(2z+1) + 16U5 = 99878253750284141 ((S5 - 22)/2 - 25)/2 = 8T5 + 20T4 + 20T3 + 20w + 5z + 8U5 = 49939126875142058 thus z is even. (S6 - 22)/4 = 16T6 + 48T5 + 60T4 + 40T3 + 15(2w+1) + 3(2z+1) + 16U6 = 82891805399606292298 ((S6 - 22)/4 - 18)/2 = 8T6 + 24T5 + 30T4 + 20T3 + 15w + 3z + 8U6 = 41445902699803146140 thus w is even. (S2 - 22)/4 = 2w+1 + 2z+1 + 2v+1 = 13753663 ((S2 - 22)/4 - 3)/2 = w + z + v = 6876830 thus v is even. Since T4 = T2 (mod 4) U4 = U2 (mod 4) Let T4 = 4r+1 Let U4 = 4q+1 ((S5 - 22)/2 - 25)/2 = 8T5 + 20(4r+1) + 20T3 + 20w + 5z + 8U5 = 49939126875142058 (((S5 - 22)/2 - 25)/2 - 20)/2 = 4T5 + 40r + 10T3 + 10w + 5z/2 + 4U5 = 24969563437571019 thus z/2 is odd. ((S6 - 22)/4 - 18)/2 = 8T6 + 24T5 + 30(4r+1) + 20T3 + 15w + 3z + 8U6 = 41445902699803146140 (((S6 - 22)/4 - 18)/2 - 30)/2 = 4T6 + 12T5 + 60r + 10T3 + 15w/2 + 3z/2 + 4U6 = 20722951349901573055 thus w/2 is even. (S4 - 22)/8 = 2(4r+1) + 4T3 + 3(2w+1) + 2z+1 + 2(4q+1) = 15473007722348 ((S4 - 22)/8 - 8)/2 = 4r + 2T3 + 3w + z + 4q = 7736503861170 ((S4 - 22)/8 - 8)/4 = 2r + T3 + 3w/2 + z/2 + 2q = 3868251930585 thus w/2 is odd. w/2 can't be both even and odd.