Order 41 Octamagic Series Impossibility Theorem. There are no order 41 octamagic series. Proof. S1 = 34481 S2 = 38653201 ≡ 1 (mod 9) S3 = 48746513801 ≡ 2 (mod 9) S4 = 65573802634465 ≡ 1 (mod 9) S5 = 91885277400846761 S6 = 132432914251807958881 S7 = 194850161950311443496521 S8 = 291235973392830670554641185 From the Modulo 9/3 Tetramagic Series Lemma, there are 9a+4 entries of 2 (mod 3), 9b+6 entries of 1 (mod 3), and 9c+4 entries of 0 (mod 3), where a+b+c = 3. Let 3Aj+1 be the square of an entry of 1 or 2 (mod 3), j=1..9(a+b)+10 Let 9Bj be the square of an entry of 0 (mod 3), j=1..9c+4 Let Tn = sum (Aj)n, j=1..9(a+b)+10, n=1..4 Let Un = sum (Bj)n, j=1..9c+4, n=1..4 S2 = 3T1 + 9(a+b)+10 + 9U1 S4 = 9T2 + 6T1 + 9(a+b)+10 + 81U2 S6 = 27T3 + 27T2 + 9T1 + 9(a+b)+10 + 729U3 S8 = 81T4 + 108T3 + 54T2 + 12T1 + 9(a+b)+10 + 6561U4 (S2 - 10)/3 = T1 + 3(a+b) + 3U1 = 12884397 ≡ 0 (mod 3) thus T1 ≡ 0 (mod 3) and T3 ≡ 0 (mod 3). (S6 - 10)/9 = 3T3 + 3T2 + T1 + (a+b) + 81U3 = 14714768250200884319 ≡ 2 (mod 3) thus a+b ≡ 2 (mod 3) and since a+b <= 3 a+b = 2. (S8 - 10)/3 = 27T4 + 36T3 + 18T2 + 4T1 + 3(a+b) + 2187U4 = 97078657797610223518213725 ((S8 - 10)/3 - 6)/3 = 9T4 + 12T3 + 6T2 + 4T1/3 + 729U4 = 32359552599203407839404573 ≡ 2 (mod 3) thus T1/3 ≡ 2 (mod 3). ((S6 - 10)/9 - 2)/3 = T3 + T2 + T1/3 + 27U3 = 4904922750066961439 ≡ 2 (mod 3) thus T2 ≡ 0 (mod 3). (S4 - 10)/9 = T2 + 2T1/3 + (a+b) + 9U2 = 7285978070495 ≡ 2 (mod 3) (S4 - 10)/9 - 2 = T2 + 2T1/3 + 9U2 = 7285978070493 ≡ 0 (mod 3) thus T2 ≡ 1 (mod 3) T2 can't be both 0 and 1 (mod 3)