16th-order non-normal trimagic squares
In taking some freedom with the strict definition of a magic square, we have to point out the results of an American, David M. Collison, which communicates in 1991 to John R. Hendricks a trimagic square of order-16.
1160 |
1189 |
539 |
496 |
672 |
695 |
57 |
10 |
11 |
58 |
631 |
654 |
515 |
558 |
1123 |
1152 |
531 |
560 |
675 |
632 |
43 |
66 |
1179 |
1132 |
1133 |
1180 |
2 |
25 |
651 |
694 |
494 |
523 |
1155 |
1089 |
422 |
379 |
831 |
767 |
92 |
45 |
91 |
44 |
790 |
808 |
403 |
360 |
1118 |
1126 |
832 |
766 |
99 |
56 |
1154 |
1090 |
415 |
368 |
414 |
367 |
1113 |
1131 |
80 |
37 |
795 |
803 |
1106 |
1135 |
411 |
454 |
716 |
739 |
27 |
74 |
75 |
28 |
757 |
780 |
473 |
430 |
1143 |
1172 |
409 |
438 |
717 |
760 |
19 |
42 |
1115 |
1162 |
1163 |
1116 |
60 |
83 |
779 |
736 |
446 |
475 |
999 |
1007 |
192 |
235 |
977 |
995 |
164 |
211 |
163 |
210 |
1018 |
954 |
173 |
216 |
1036 |
970 |
982 |
990 |
175 |
218 |
994 |
1012 |
181 |
228 |
180 |
227 |
1035 |
971 |
156 |
199 |
1019 |
953 |
183 |
191 |
991 |
1034 |
195 |
213 |
963 |
1010 |
962 |
1009 |
236 |
172 |
972 |
1015 |
220 |
154 |
200 |
208 |
974 |
1017 |
178 |
196 |
980 |
1027 |
979 |
1026 |
219 |
155 |
955 |
998 |
237 |
171 |
715 |
744 |
20 |
63 |
1107 |
1130 |
418 |
465 |
466 |
419 |
1148 |
1171 |
82 |
39 |
752 |
781 |
18 |
47 |
1108 |
1151 |
410 |
433 |
724 |
771 |
772 |
725 |
451 |
474 |
1170 |
1127 |
55 |
84 |
101 |
35 |
1153 |
1110 |
423 |
359 |
823 |
776 |
822 |
775 |
382 |
400 |
1134 |
1091 |
64 |
72 |
424 |
358 |
830 |
787 |
100 |
36 |
1146 |
1099 |
1145 |
1098 |
59 |
77 |
811 |
768 |
387 |
395 |
667 |
696 |
46 |
3 |
1165 |
1188 |
550 |
503 |
504 |
551 |
1124 |
1147 |
22 |
65 |
630 |
659 |
38 |
67 |
1168 |
1125 |
536 |
559 |
686 |
639 |
640 |
687 |
495 |
518 |
1144 |
1187 |
1 |
30 |
S1 = 9,520. S2 = 8,228,000. S3 = 7,946,344,000.
His freedom was to have not taken consecutive numbers. The 16x16 = 256 used numbers are between 1 and 1,189, so there are numerous gaps. For example, no number between 237 and 358 was used. In spite of that freedom, hat's off to the artist!
Download the 16th-order non-normal trimagic square of David Collison, Excel file 69Kb.
Jacques Guéron (France), has communicated us in May 2002 a 16th-order non-normal trimagic square that he had constructed in 1987. Like the David Collison's square, he has taken some freedoms with the definition of the magic squares, but different freedoms: the numbers from 0 to 63 are here placed 4 times in his square. In fact, it is the same 8th-order square, more some rotations, placed in the 4 quarters of the 16th-order square.
4 |
11 |
29 |
18 |
56 |
55 |
33 |
46 |
17 |
30 |
8 |
7 |
45 |
34 |
52 |
59 |
40 |
39 |
49 |
62 |
20 |
27 |
13 |
2 |
61 |
50 |
36 |
43 |
1 |
14 |
24 |
23 |
15 |
0 |
22 |
25 |
51 |
60 |
42 |
37 |
26 |
21 |
3 |
12 |
38 |
41 |
63 |
48 |
35 |
44 |
58 |
53 |
31 |
16 |
6 |
9 |
54 |
57 |
47 |
32 |
10 |
5 |
19 |
28 |
54 |
57 |
47 |
32 |
10 |
5 |
19 |
28 |
35 |
44 |
58 |
53 |
31 |
16 |
6 |
9 |
26 |
21 |
3 |
12 |
38 |
41 |
63 |
48 |
15 |
0 |
22 |
25 |
51 |
60 |
42 |
37 |
61 |
50 |
36 |
43 |
1 |
14 |
24 |
23 |
40 |
39 |
49 |
62 |
20 |
27 |
13 |
2 |
17 |
30 |
8 |
7 |
45 |
34 |
52 |
59 |
4 |
11 |
29 |
18 |
56 |
55 |
33 |
46 |
46 |
33 |
55 |
56 |
18 |
29 |
11 |
4 |
59 |
52 |
34 |
45 |
7 |
8 |
30 |
17 |
2 |
13 |
27 |
20 |
62 |
49 |
39 |
40 |
23 |
24 |
14 |
1 |
43 |
36 |
50 |
61 |
37 |
42 |
60 |
51 |
25 |
22 |
0 |
15 |
48 |
63 |
41 |
38 |
12 |
3 |
21 |
26 |
9 |
6 |
16 |
31 |
53 |
58 |
44 |
35 |
28 |
19 |
5 |
10 |
32 |
47 |
57 |
54 |
28 |
19 |
5 |
10 |
32 |
47 |
57 |
54 |
9 |
6 |
16 |
31 |
53 |
58 |
44 |
35 |
48 |
63 |
41 |
38 |
12 |
3 |
21 |
26 |
37 |
42 |
60 |
51 |
25 |
22 |
0 |
15 |
23 |
24 |
14 |
1 |
43 |
36 |
50 |
61 |
2 |
13 |
27 |
20 |
62 |
49 |
39 |
40 |
59 |
52 |
34 |
45 |
7 |
8 |
30 |
17 |
46 |
33 |
55 |
56 |
18 |
29 |
11 |
4 |
S1 = 504, S2 = 21 336, S3 = 1 016 064.
Download the 16th-order non-normal trimagic square of Jacques Guéron, Excel file 44Kb.
Return to the home page http://www.multimagie.com