16th-order non-normal trimagic squares


In taking some freedom with the strict definition of a magic square, we have to point out the results of an American, David M. Collison, which communicates in 1991 to John R. Hendricks a trimagic square of order-16.

1991: 16th-order trimagic square using non consecutive numbers, of David M. Collison

1160

1189

539

496

672

695

57

10

11

58

631

654

515

558

1123

1152

531

560

675

632

43

66

1179

1132

1133

1180

2

25

651

694

494

523

1155

1089

422

379

831

767

92

45

91

44

790

808

403

360

1118

1126

832

766

99

56

1154

1090

415

368

414

367

1113

1131

80

37

795

803

1106

1135

411

454

716

739

27

74

75

28

757

780

473

430

1143

1172

409

438

717

760

19

42

1115

1162

1163

1116

60

83

779

736

446

475

999

1007

192

235

977

995

164

211

163

210

1018

954

173

216

1036

970

982

990

175

218

994

1012

181

228

180

227

1035

971

156

199

1019

953

183

191

991

1034

195

213

963

1010

962

1009

236

172

972

1015

220

154

200

208

974

1017

178

196

980

1027

979

1026

219

155

955

998

237

171

715

744

20

63

1107

1130

418

465

466

419

1148

1171

82

39

752

781

18

47

1108

1151

410

433

724

771

772

725

451

474

1170

1127

55

84

101

35

1153

1110

423

359

823

776

822

775

382

400

1134

1091

64

72

424

358

830

787

100

36

1146

1099

1145

1098

59

77

811

768

387

395

667

696

46

3

1165

1188

550

503

504

551

1124

1147

22

65

630

659

38

67

1168

1125

536

559

686

639

640

687

495

518

1144

1187

1

30

S1 = 9,520. S2 = 8,228,000. S3 = 7,946,344,000.

His freedom was to have not taken consecutive numbers. The 16x16 = 256 used numbers are between 1 and 1,189, so there are numerous gaps. For example, no number between 237 and 358 was used. In spite of that freedom, hat's off to the artist!


Jacques Guéron (France), has communicated us in May 2002 a 16th-order non-normal trimagic square that he had constructed in 1987. Like the David Collison's square, he has taken some freedoms with the definition of the magic squares, but different freedoms: the numbers from 0 to 63 are here placed 4 times in his square. In fact, it is the same 8th-order square, more some rotations, placed in the 4 quarters of the 16th-order square.

S1 = 504, S2 = 21 336, S3 = 1 016 064.


Return to the home page http://www.multimagie.com