11 parametric solutions of 4x4
magic squares of squares
by Seiji Tomita, November 2018.
Solution #1, 4x4 magic square of squares, S = 50(k²+337) |
|||
(2k+105)² |
(3k+38)² |
(6k-59)² |
(k+30)² |
(k-66)² |
(6k+5)² |
(3k+70)² |
(2k-87)² |
(3k-38)² |
(2k-105)² |
(k-30)² |
(6k+59)² |
(6k-5)² |
(k+66)² |
(2k+87)² |
(3k-70)² |
Solution #2, 4x4 magic square of squares, S = 130(k²+281) |
|||
(3k+154)² |
(6k+13)² |
(9k-78)² |
(2k+81)² |
(2k-111)² |
(9k+18)² |
(6k+77)² |
(3k-134)² |
(6k-13)² |
(3k-154)² |
(2k-81)² |
(9k+78)² |
(9k-18)² |
(2k+111)² |
(3k+134)² |
(6k-77)² |
Solution #3, 4x4 magic square of squares, S = 125(k²+373) |
|||
(4k+165)² |
(6k+2)² |
(8k-114)² |
(3k+80)² |
(3k-136)² |
(8k+30)² |
(6k+110)² |
(4k-123)² |
(6k-2)² |
(4k-165)² |
(3k-80)² |
(8k+114)² |
(8k-30)² |
(3k+136)² |
(4k+123)² |
(6k-110)² |
Solution #4, 4x4 magic square of squares, S = 130(2k²+53) |
|||
(3k+70)² |
(5k+33)² |
(15k-26)² |
(k+15)² |
(k-30)² |
(15k+1)² |
(5k+42)² |
(3k-65)² |
(5k-33)² |
(3k-70)² |
(k-15)² |
(15k+26)² |
(15k-1)² |
(k+30)² |
(3k+65)² |
(5k-42)² |
Solution #5, 4x4 magic square of squares, S = 145(k²+74) |
|||
(4k+80)² |
(5k+36)² |
(10k-53)² |
(2k+15)² |
(2k-55)² |
(10k+3)² |
(5k+64)² |
(4k-60)² |
(5k-36)² |
(4k-80)² |
(2k-15)² |
(10k+53)² |
(10k-3)² |
(2k+55)² |
(4k+60)² |
(5k-64)² |
Solution #6, 4x4 magic square of squares, S = 340(k²+29) |
|||
(5k+81)² |
(9k+15)² |
(15k-43)² |
(3k+35)² |
(3k-55)² |
(15k+7)² |
(9k+45)² |
(5k-69)² |
(9k-15)² |
(5k-81)² |
(3k-35)² |
(15k+43)² |
(15k-7)² |
(3k+55)² |
(5k+69)² |
(9k-45)² |
Solution #7, 4x4 magic square of squares, S = 290(2k²+37) |
|||
(7k+81)² |
(9k+42)² |
(21k-47)² |
(3k+14)² |
(3k-49)² |
(21k+2)² |
(9k+63)² |
(7k-66)² |
(9k-42)² |
(7k-81)² |
(3k-14)² |
(21k+47)² |
(21k-2)² |
(3k+49)² |
(7k+66)² |
(9k-63)² |
Solution #8, 4x4 magic square of squares, S = 130(k²+281) |
|||
(2k+165)² |
(5k+34)² |
(10k-57)² |
(k+70)² |
(k-90)² |
(10k+7)² |
(5k+66)² |
(2k-155)² |
(5k-34)² |
(2k-165)² |
(k-70)² |
(10k+57)² |
(10k-7)² |
(k+90)² |
(2k+155)² |
(5k-66)² |
Solution #9, 4x4 magic square of squares, S = 221(k²+85) |
|||
(3k+112)² |
(8k+6)² |
(12k-43)² |
(2k+66)² |
(2k-78)² |
(12k+11)² |
(8k+42)² |
(3k-104)² |
(8k-6)² |
(3k-112)² |
(2k-66)² |
(12k+43)² |
(12k-11)² |
(2k+78)² |
(3k+104)² |
(8k-42)² |
Solution #10, 4x4 magic square of squares, S = 481(k²+50) |
|||
(3k+128)² |
(12k+4)² |
(18k-33)² |
(2k+81)² |
(2k-87)² |
(18k+9)² |
(12k+32)² |
(3k-124)² |
(12k-4)² |
(3k-128)² |
(2k-81)² |
(18k+33)² |
(18k-9)² |
(2k+87)² |
(3k+124)² |
(12k-32)² |
Solution #11, 4x4 magic square of squares, S = 325(k²+149) |
|||
(8k+162)² |
(9k+24)² |
(12k-143)² |
(6k+34)² |
(6k-146)² |
(12k+17)² |
(9k+144)² |
(8k-78)² |
(9k-24)² |
(8k-162)² |
(6k-34)² |
(12k+143)² |
(12k-17)² |
(6k+146)² |
(8k+78)² |
(9k-144)² |
Construction method
S = (a1² + a2² + a3² + a4²)k² + (b1² + b2² + b3² + b4²) |
|||
(a1k + b1)² |
(a2k + b2)² |
(a3k - b3)² |
(a4k + b4)² |
(a4k - c1)² |
(a3k + c2)² |
(a2k + c3)² |
(a1k - c4)² |
(a2k - b2)² |
(a1k - b1)² |
(a4k - b4)² |
(a3k + b3)² |
(a3k - c2)² |
(a4k + c1)² |
(a1k + c4)² |
(a2k - c3)² |
And solving simultaneous equations:
Return to the home page http://www.multimagie.com