
Estimating the number of 𝐾-multimagic 𝛼-hypercube series 
 

In this note I want to show that the leading-order Gaussian estimate for the number of 𝐾-multimagic 

series for ∝-dimensional (hyper)cubes (𝛼 ≥ 3) of order 𝑁 can be expressed as follows: 

𝒩∝,𝑔
(𝐾)

(𝑁) ≈ √
(2𝐾 + 1)!

(2𝜋)𝐾+1
∏

(𝐾 + 𝑖)!

𝑖!

𝐾

𝑖=1

∙
(𝑁𝛼−1𝑒)𝑁

𝑁(𝛼𝐾+1)(𝐾+1)/2
 (𝑁 → ∞) 

The formula for squares (𝛼 = 2) is slightly different because it has an extra constant factor 1/√𝑒.  

Some special cases (𝐾 ≤ 3 and 𝛼 ≤ 3) already appear in M. Quist’s paper (arXiv:1306.0616).  This 

note applies the ideas already presented in his paper in order to derive this more general formula.  

Although there are some minor additional problems to be solved, no really new ideas are necessary. 

In general, consider 𝑚 (K+1)-vectors 𝑆𝑖 = (𝑠𝑖,0, … , 𝑠𝑖,𝐾) where 𝑠𝑖,𝑘 = (
𝑖
𝑘

), and then consider 𝑚 

pairwise independent random vectors 𝑋𝑖 = (𝑥𝑖,0, … , 𝑥𝑖,𝐾) equal to 𝑆𝑖 with probability 𝛽 and equal to 

(0, … ,0) otherwise. 

Then the distribution of the vector 𝐴 = ∑ 𝑋𝑖
𝑚
𝑖=1  approaches a (K+1)-dimensional Gaussian as 𝑚 

becomes larger.  Taking 𝑚 = 𝑁𝛼 and 𝛽 = 1 𝑁𝛼−1⁄  we have, as M. Quist shows, 

𝒩∝,𝑔
(𝐾)

(𝑁) = 𝛽−𝛽𝑚(1 − 𝛽)−(1−𝛽)𝑚 ∙ 𝑃𝑔
∗(𝑚, 𝛽) 

where 𝑃𝑔
∗(𝑚, 𝛽) is the “central probability” (the peak value) of the above (K+1)-dimensional Gaussian 

distribution.  From its well-known probability density function, see for example 

https://en.wikipedia.org/wiki/Multivariate_normal_distribution, it is easy to see that 

𝑃𝑔
∗(𝑚, 𝛽) ≈

1

√(2𝜋)𝐾+1 det 𝛴
 

where 𝛴 is the covariance matrix.  If we write 𝐴 = (𝑎0, … , 𝑎𝐾) with 𝑎𝑘 = ∑ 𝑥𝑖,𝑘
𝑚
𝑖=1 , then 

𝛴 = (
𝑐𝑜𝑣(𝑎0, 𝑎0) ⋯ 𝑐𝑜𝑣(𝑎0, 𝑎𝐾)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑎𝐾 , 𝑎0) ⋯ 𝑐𝑜𝑣(𝑎𝐾 , 𝑎𝐾)

) 

Because the 𝑋𝑖  are pairwise independent, 

𝑐𝑜𝑣(𝑎𝑗 , 𝑎𝑘) = ∑ 𝑐𝑜𝑣(𝑥𝑖,𝑘 , 𝑥𝑖,𝑘)

𝑚

𝑖=1

= ∑(𝐸[𝑥𝑖,𝑗𝑥𝑖,𝑘] − 𝐸[𝑥𝑖,𝑗]𝐸[𝑥𝑖,𝑘])

𝑚

𝑖=1

 

and this can be worked out as follows: 

𝑐𝑜𝑣(𝑎𝑗, 𝑎𝑘) = ∑(𝛽𝑠𝑖,𝑗𝑠𝑖,𝑘 − (𝛽𝑠𝑖,𝑗)(𝛽𝑠𝑖,𝑘))

𝑚

𝑖=1

= 𝛽(1 − 𝛽) ∑ 𝑠𝑖,𝑗𝑠𝑖,𝑘

𝑚

𝑖=1

= 𝛽(1 − 𝛽) ∑ (
𝑖
𝑗
) (

𝑖
𝑘

)

𝑚

𝑖=1

 

https://arxiv.org/abs/1306.0616
https://en.wikipedia.org/wiki/Multivariate_normal_distribution


Use the two approximations 

(
𝑖
𝑡
) ≈

𝑖𝑡

𝑡!
 (𝑖 → ∞) and ∑ 𝑖𝑡

𝑚

𝑖=1

≈
𝑚𝑡+1

𝑡 + 1
 (𝑚 → ∞) 

to obtain 

𝑐𝑜𝑣(𝑎𝑗, 𝑎𝑘) ≈
𝛽(1 − 𝛽)

𝑗! 𝑘!
∑ 𝑖𝑗+𝑘

𝑚

𝑖=1

≈
𝛽(1 − 𝛽)

𝑗! 𝑘!

𝑚𝑗+𝑘+1

𝑗 + 𝑘 + 1
= 𝛽(1 − 𝛽)𝑚

𝑚𝑗+𝑘

𝑗! 𝑘! (𝑗 + 𝑘 + 1)
 

To compute det 𝛴, note that all elements on the same row as the element 𝑐𝑜𝑣(𝑎𝑗, 𝑎𝑘) contain a 

factor 𝑚𝑗 𝑗!⁄ , and that at the same time all elements on the same column as the element 𝑐𝑜𝑣(𝑎𝑗, 𝑎𝑘) 

contain another factor 𝑚𝑘 𝑘!⁄ .  So 

det 𝛴 ≈ (𝛽(1 − 𝛽)𝑚)𝐾+1  (∏
𝑚𝑖

𝑖!

𝐾

𝑖=1

)

2

det 𝐻𝐾+1 

where 𝐻𝐾+1 is the Hilbert matrix of order 𝐾 + 1.  Its determinant is well-known (an inductive proof 

can be found in http://s3.amazonaws.com/cramster-resource/10732_n_23997.pdf): 

det 𝐻𝑛 =
(𝑛 − 1)‼4

(2𝑛 − 1)‼
 

where 𝑛‼ ≔ ∏ 𝑖!𝑛
𝑖=1 .  So 

det 𝛴 ≈ (𝛽(1 − 𝛽)𝑚)𝐾+1  (∏
𝑚𝑖

𝑖!

𝐾

𝑖=1

)

2

𝐾‼4

(2𝐾 + 1)‼
= (𝛽(1 − 𝛽)𝑚)𝐾+1  (∏ 𝑚𝑖

𝐾

𝑖=1

)

2

𝐾‼2

(2𝐾 + 1)‼
 

Working out the factors separately, 

𝛽𝑚(1 − 𝛽) = 𝑁(1 − 1 𝑁𝛼−1⁄ ) ≈ 𝑁 (𝑁 → ∞) 

∏ 𝑚𝑖

𝐾

𝑖=1

= 𝑚1+2+⋯+𝐾 = 𝑚𝐾(𝐾+1)/2 = 𝑁𝛼𝐾(𝐾+1)/2 

𝐾‼2

(2𝐾 + 1)‼
=

(∏ 𝑖!𝐾
𝑖=1 )

2

(∏ 𝑖!𝐾
𝑖=1 )(∏ 𝑖!2𝐾

𝑖=𝐾+1 )(2𝐾 + 1)!
=

∏ 𝑖!𝐾
𝑖=1

(∏ 𝑖!2𝐾
𝑖=𝐾+1 )(2𝐾 + 1)!

=
1

(2𝐾 + 1)!
∏

𝑖!

(𝐾 + 𝑖)!

𝐾

𝑖=1

 

one obtains the following approximation for det 𝛴 and 𝑃𝑔
∗(𝑚, 𝛽): 

det 𝛴 ≈ 𝑁𝐾+1𝑁𝛼𝐾(𝐾+1) 1

(2𝐾 + 1)!
∏

𝑖!

(𝐾 + 𝑖)!

𝐾

𝑖=1

= 𝑁(𝛼𝐾+1)(𝐾+1) 1

(2𝐾 + 1)!
∏

𝑖!

(𝐾 + 𝑖)!

𝐾

𝑖=1

 

𝑃𝑔
∗(𝑚, 𝛽) ≈

1

√(2𝜋)𝐾+1 det 𝛴
≈

1

𝑁(𝛼𝐾+1)(𝐾+1)/2
√

(2𝐾 + 1)!

(2𝜋)𝐾+1
∏

(𝐾 + 𝑖)!

𝑖!

𝐾

𝑖=1

 

http://s3.amazonaws.com/cramster-resource/10732_n_23997.pdf


To obtain the approximation for 𝒩∝,𝑔
(𝐾)(𝑁) appearing in the beginning of this note we only have to 

insert an approximation for the factor 𝛽−𝛽𝑚(1 − 𝛽)−(1−𝛽)𝑚, where 𝑚 = 𝑁𝛼 and 𝛽 = 1 𝑁𝛼−1⁄ .  M. 

Quist already showed that for ∝= 2 

𝛽−𝛽𝑚(1 − 𝛽)−(1−𝛽)𝑚 ≈ (𝑁𝑒)𝑁 √𝑒⁄  (𝑁 → ∞) 

and that for ∝≥ 3 

𝛽−𝛽𝑚(1 − 𝛽)−(1−𝛽)𝑚 ≈ (𝑁∝−1𝑒)𝑁 (𝑁 → ∞) 

Anyway, here is a perhaps slightly more detailed derivation. 

𝛽−𝛽𝑚(1 − 𝛽)−(1−𝛽)𝑚 = 𝑁(𝛼−1)𝑁(1 − 1 𝑁𝛼−1⁄ )−(𝑁𝛼−𝑁)

= 𝑁(𝛼−1)𝑁 exp[−(𝑁𝛼 − 𝑁) ln(1 − 1 𝑁𝛼−1⁄ )]

= 𝑁(𝛼−1)𝑁 exp[((𝑁𝛼 − 𝑁) 𝑁𝛼−1⁄ )(− ln(1 − 1 𝑁𝛼−1⁄ ) (1 𝑁𝛼−1⁄ )⁄ )] 

Now consider the following Taylor series expansion: 

1

1 − 𝑦
= 1 + 𝑦 + 𝑦2 + ⋯ (−1 < 𝑦 < 1) 

Integrate both sides, and then divide both sides by 𝑦: 

−
1

𝑦
ln(1 − 𝑦) = 1 +

1

2
𝑦 +

1

3
𝑦2 + ⋯ (0 < 𝑦 < 1) 

Apply this expansion with 𝑦 = 1 𝑁𝛼−1⁄ : 

𝛽−𝛽𝑚(1 − 𝛽)−(1−𝛽)𝑚 = 𝑁(𝛼−1)𝑁 exp [𝑁 (1 −
1

𝑁𝛼−1
) (1 +

1

2𝑁𝛼−1
+ ⋯ )] 

For ∝= 2 the argument of the exponential is 

𝑁 (1 −
1

𝑁
) (1 +

1

2𝑁
+ ⋯ ) = (𝑁 − 1) (1 +

1

2𝑁
+ ⋯ ) = (𝑁 +

1

2
+ ⋯ ) − (1 +

1

2𝑁
+ ⋯ ) ≈ 𝑁 −

1

2
 

So after substituting: 

𝛽−𝛽𝑚(1 − 𝛽)−(1−𝛽)𝑚 ≈ 𝑁𝑁𝑒𝑁−1 2⁄ = (𝑁𝑒)𝑁 √𝑒⁄  

For ∝≥ 3 there is no constant term in the exponent, so the result becomes 

𝛽−𝛽𝑚(1 − 𝛽)−(1−𝛽)𝑚 ≈ 𝑁(𝛼−1)𝑁𝑒𝑁 = (𝑁𝛼−1𝑒)𝑁 

This completes the derivation of the general formula in the beginning of this note.  There is one more 

thing I would like to mention at this point.  When I computed the exact matrix 𝛴 and its determinant 

det 𝛴, I noticed a pattern.  For example with 𝐾 = 3 an exact symbolic computation shows that 

det 𝛴 =
1

870912000
(𝛽(1 − 𝛽)𝑚)4 (𝑚2 − 1)3 (𝑚2 − 2)2 (𝑚2 − 3)  

This suggests a surprisingly simple general formula (simple compared to the complexity of 𝛴 itself): 



det 𝛴 =
𝐾‼2

(2𝐾 + 1)‼
 (𝛽(1 − 𝛽)𝑚)𝐾+1 ∏(𝑚2 − 𝑖)𝐾+1−𝑖

𝐾

𝑖=1

 

However, I did not try to find a general proof.  Such a proof does not seem to be trivial (at least not 

to me), and it is not needed in this note because only the leading term of this polynomial in 𝑚 is 

required. 

Finally some remarks about the agreement with the known exact results. 

M. Quist already mentions in his paper that the results for trimagic series will not be very accurate 

for several reasons.  I quote: “The agreement is fairly poor at the accessible values of 𝑁, and because 

the errors oscillate in magnitude, the 1/𝑁 correction cannot improve matters much. There are 

clearly non-perturbative effects that need to be better understood, and these effects are evidently 

more important for higher multimagic series. Indeed, similar (albeit smaller) oscillatory effects are 

already apparent in the bimagic series approximation.” 

I’ll just illustrate this with another example: the number of trimagic series for cubes, for which only a 

few exact results are knows today (see http://www.multimagie.com/English/CubeSeries.htm). 

𝒩3,𝑔
(3)

(𝑁) ≈
720√105

𝜋2
∙

(𝑁2𝑒)𝑁

𝑁20
 

𝐾  𝛼  𝑁  Estimated number Exact number Exact/estimate 

3 3 7 6.9679 161 23.1 

3 3 8 5.4403*10^2 17218 31.6 

3 3 9 7.4781*10^4 363949 4.87 

 

These results are quite poor indeed, but gradual improvements can be expected for increasing values 

of 𝑁, which unfortunately cannot be verified because no more exact values are known. 

At least, such a gradual improvement seems to occur in the case of trimagic series for squares, for 

which more exact results are available (see http://www.multimagie.com/English/Series.htm): 

𝒩2,𝑔
(3)

(𝑁) ≈
720√105

𝜋2√𝑒
∙

(𝑁𝑒)𝑁

𝑁14
 

𝐾  𝛼  𝑁  Estimated number Exact number Exact/estimate 

3 2 7 0.6037 0 0 

3 2 8 5.1558 121 23.5 

3 2 9 6.2218*10^1 126 2.03 

3 2 11 2.0396*10^4 31187 1.53 

3 2 12 5.1245*10^5 2226896 4.35 

3 2 13 1.5430*10^7 17265701 1.12 

3 2 15 2.2233*10^10 69303997733 3.12 

3 2 16 1.0314*10^12 1683487116508 1.63 

3 2 17 5.3806*10^13 112205432382966 2.09 

 

http://www.multimagie.com/English/CubeSeries.htm
http://www.multimagie.com/English/Series.htm


As can be seen from this last table, the oscillations seem to become smaller for increasing values of 

𝑁 (but will never disappear completely), and one is inclined to expect the same thing to happen for 

cubes and for hypercubes of higher dimensions as well. 
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