Earlier in 2013, Lee Morgenstern gave a number of proofs for tetramagic, pentamagic and hexamagic series or squares. These proofs based on properties modulo $M(M=2,3,5,7)$ may be expressed as more general links between the "magic sums" $S_{k}=\frac{1}{n} \sum_{m=1}^{n^{2}} m^{k}$ and the number of entries according to their remainders modulo M.
Nota. Series of order $n=4 m+2$ cannot be trimagic, because S_{1} is odd and S_{3} is even.
$M=2$ (odd/even entries)
Let n_{1} the number of odd entries.

- Tetramagic series
$n_{1}=S_{4} \quad(\bmod 16)$
Special cases
a/ If $n_{1}=1, S_{4}-4 S_{3}-4 S_{2}+16 S_{1} \quad(\bmod 128) \in\{9,49,105,113\}$
Example: $n=17,25,49$ or $57, S 4-4 S_{3}-4 S_{2}+16 S_{1}=73 \quad(\bmod 128)$, so n_{1} cannot be 1 .
b/ Suppose there is no even entry $\left(n_{1}=n\right)$. Then $2 S_{2}-S_{4}=n \quad(\bmod 64)$ which may be a contradiction.
Example: $n=16 k+1,2 S_{2}-S_{4}=1 \quad(\bmod 64)$, so n_{1} cannot be n when k is not a multiple of 4 .
$n=16 k-1,2 S_{2}-S_{4}=63 \quad(\bmod 64)$.
- Pentamagic series
$n_{1}=S_{4}-6 S_{3}+6 S_{5} \quad(\bmod 32)$.
Example: $n=19, S_{4}-6 S_{3}+6 S_{5}=23 \quad(\bmod 32) ; n_{1} \geq 23>19=n$.
$n=23, S_{4}-6 S_{3}+6 S_{5}=31 \quad(\bmod 32) ; n_{1} \geq 31>23=n$.
$n=17$ or $25, n_{1}=1(\bmod 32)$; in contradiction with the tetramagic condition (special case a/).
$n=31,39,47,55,63: n_{1}=31(\bmod 32)$, so n_{1} cannot be $15($ nor 47 if $n \geq 47$)
$n=33,41,49,57,65: n_{1}=1 \quad(\bmod 32)$, so n_{1} cannot be 17 (nor 49 if $n \geq 49$)
- Hexamagic series
$n_{1}=2 S_{6}-5 S_{4}+4 S_{2} \quad(\bmod 64)$.
Example: $n=36,2 S_{6}-5 S_{4}+4 S_{2}=50 \quad(\bmod 64) ; n_{1} \geq 50>36=n$.
Similar impossibility for $n=19,20,21,23,25,28,29,31,37,44,47,52,60$.

$M=3$

Let $n_{k}(k=1,2)$ the number of entries with remainder k modulo 3 .

- Tetramagic series

By Lee's Modulo 9 Tetramagic Lemma
$n_{1}=4 S_{2}-4 S_{3}+S_{4} \quad(\bmod 9), n_{2}=4 S_{2}+4 S_{3}+S_{4} \quad(\bmod 9)$.
Example: $n=20, n_{1}=4(\bmod 9), n_{2}=8(\bmod 9)$.

- Pentamagic series
$n_{1}-n_{2}=7 S_{3}-6 S_{5} \quad(\bmod 27)$
- Hexamagic series
$n_{1}=20 S_{6}-3 S_{5}-10 S_{3}-6 S_{2} \quad(\bmod 27)$,
$n_{2}=20 S_{6}+3 S_{5}+10 S_{3}-6 S_{2} \quad(\bmod 27)$.
Example: $n=24, n_{1}=n_{2}=26 \quad(\bmod 27) ; n_{1}+n_{2} \geq 52>24=n$.
Similar impossibility $\left(n_{1}+n_{2}>n\right)$ for $n=17,19,21,24,28,31,32,35,37$, 39, 43, 47, 48.

$M=5$

Let $n_{k}(k=1,2,3,4)$ the number of entries with remainder k modulo 5 .

- Tetramagic series

By Lee's Modulo 5 Tetramagic Lemma (notice that $\left.S_{1}=S_{2}=S_{3}(\bmod 5)\right)$.
$n_{1}=2 S_{1}-S_{4} \quad(\bmod 5), n_{2}=n_{3}=n_{4}=S_{1}-S_{4} \quad(\bmod 5)$.
Example: $n=12, n_{1}=n_{2}=n_{3}=n_{4}=2(\bmod 5)$.
$n=16, n_{1}=2(\bmod 5), n_{2}=n_{3}=n_{4}=1 \quad(\bmod 5)$.

- Pentamagic series
$S_{5}=S_{1} \quad(\bmod 5)$ by Fermat's theorem.
$n_{1}+7 n_{2}-7 n_{3}-n_{4}=S_{5}(\bmod 25)$.
Example: $n=16, n_{1}+7 n_{2}-7 n_{3}-n_{4}=11(\bmod 25)$
- Hexamagic series
$n_{1}-n_{2}-n_{3}+n_{4}=12 S_{6}-11 S_{2} \quad(\bmod 25)$.
Example: $n=16, n_{1}-n_{2}-n_{3}+n_{4}=11(\bmod 25)$, $n_{1}=12, n_{2}=n_{3}=n_{4}=1 .{ }^{1}$

[^0]$M=7$, Hexamagic series
Let $n_{k}(0 \leq k \leq 6)$ the number of entries with remainder k modulo 7 .
By Lee's Modulo 7 Hexamagic Lemma
(notice that $\left.S_{4}=2 S_{1}+2 S_{2}-3 S_{3} \quad(\bmod 7), S_{5}=3 S_{1}-2 S_{3} \quad(\bmod 7)\right)$.
$n_{1}=S_{1}-3 S_{2}-3 S_{3}-S_{6} \quad(\bmod 7)$,
$n_{2}=3 S_{1}-3 S_{2}+S_{3}-S_{6} \quad(\bmod 7)$,
$n_{3}=n_{4}=3 S_{1}-S_{2}-S_{3}-S_{6}(\bmod 7)$,
$n_{5}=n_{6}=2 S_{1}-3 S_{2}+2 S_{3}-S_{6} \quad(\bmod 7)$.
Example: $n=31, n_{1}=n_{2}=4(\bmod 7)$,
$n_{3}=n_{4}=n_{5}=n_{6}=6 \quad(\bmod 7) . \sum_{k} n_{k} \geq 32>31=n$.
Similar impossibility for $n=19,20,23$.
Unfortunately, the modulus $M=7$ brings no new proof of impossibility; these hexamagic series were already proved impossible with $M=2$ or $M=$ 3.

[^0]: ${ }^{1}$ Lee's proof for hexamagic series of order 16 takes advantage of this distribution for studying the entries with remainder $0,2,3,4$ modulo 5 . The result is that some of these entries must be $>256=n^{2}$, which proves impossibility. This approach cannot be put as a general formula.

