Magic Squares of Squares Modulo 2^N
by Lee Morgenstern, January 2012.
I would like to make a contribution to the "Buell/Pech Magic Hourglass Modulo 2^N" competition.
In 1998, Duncan Buell's search found a magic hourglass modulo 2^46 (see [12]). Then in 2006 Lucien Pech's search found a magic hourglass modulo 2^52 (see Dec. 23, 2006).
I can construct not only a magic hourglass, but a full 3x3 magic square of squares modulo 2^N, for any N you want.
Pick any positive values for a,b,c.
Then arrange the following expressions into a magic square.
8(c+a)+1 8(c-a-b)+1 8(c+b)+1
8(c-a+b)+1
8c+1 8(c+a-b)+1
8(c-b)+1 8(c+a+b)+1
8(c-a)+1
Since a number congruent to 1 (mod 8) is a quadratic residue modulo 2^N for any N, the above expressions form a magic square of squares modulo 2^N for any N. You just have to find the integer square roots.
For example, pick
a,b,c = 1,3,5.
Then
49 9 65
57
41 25
17 73 33
is a magic square of squares modulo 2^N for any N. Magic sum = 123.
To find the square roots, solve the following six integer equations. [The other three entries are already squares]. Integer solutions are guaranteed to exist for any N.
A^2 = p(2^N) + 65
B^2
= q(2^N) + 57
C^2 = r(2^N) + 41
D^2 = s(2^N) +
17
E^2 = t(2^N) + 73
F^2 = u(2^N) + 33
Then use the square roots as follows.
7^2 3^2 A^2
B^2
C^2 5^2
D^2 E^2 F^2
For example, for N = 7, we get the following magic square of squares modulo 2^7 = 128.
7^2 3^2 31^2 49
9 961 (mod 128) 49 9 65
21^2 13^2
5^2 ---> 441 169 25 ---------> 57 41 25
23^2
29^2 17^2 529 841 289 17
73 33
Here are some more examples with higher values of N.
N = 8
7^2 3^2 33^2
43^2
51^2 5^2
23^2 29^2 17^2
N = 10
7^2 3^2
33^2
85^2 205^2 5^2
233^2
157^2 111^2
N = 20
7^2
3^2 115167^2
10837^2
235827^2 5^2
206569^2
126819^2 170095^2
N = 30
7^2
3^2 230047265^2
176171605^2
13395661^2 5^2
204265751^2
208539805^2 96298897^2
Here are my own entries to the Buell/Pech Magic Hourglass modulo 2^N competition [with the addition that they are fully magic]
(mod 2^8)
21^2 23^2 61^2 185
17 137
33^2 25^2 47^2 ----> 65
113 161
37^2 55^2 51^2 89
209 41
(mod 2^10)
107^2 233^2 195^2 185
17 137
33^2 231^2 47^2 ---->
65 113 161
91^2 73^2 205^2
89 209 41
(mod 2^20)
246165^2 206569^2 4803^2
185 17 137
115167^2
43239^2 211921^2 ----> 65 113 161
184411^2
149065^2 235827^2 89
209 41
(mod 2^30)
97763733^2 204265751^2 242225859^2
230047265^2
75016423^2 9649105^2 ----> etc
126013531^2
74824119^2 13395661^2
(mod 2^40)
157937811861^2 54965098775^2 32506899773^2
42182754783^2
47319656679^2 3748447279^2
128186134437^2 225560607159^2
8576538931^2
(mod 2^50)
231289259834987^2 72512802334441^2
3880797596989^2
56582666075681^2 115496040573159^2
151728856185809^2
116969802223707^2 79390397807031^2 118738679260877^2
(mod 2^60)
207959822072299115^2 170501323084323095^2
193658664774528317^2
123229457133191647^2 180259481135392999^2
98364512992543791^2
211223202335215707^2 223570521906067895^2
225861670001206989^2
(mod 2^90)
75203459322122514551553643^2 89064358005087038671628009^2
212694822416174402902168259^2
219077054094880999472512545^2 196302760081661098748061927^2
212510725734995190269295569^2
157075660995567914487459749^2 32945794187736625642620489^2
243922835234547628854450483^2
I have discovered a truly marvelous (and quick) construction method, but the width of this screen is too small to contain larger values of N.
Starting with a solution modulo 2^N, I can recursively compute a solution modulo 2^2(N-1).
So from a solution modulo 2^13, I compute a solution modulo 2^24 and then modulo 2^46 and then modulo 2^90.
Return to the home page http://www.multimagie.com