10x10 and 11x11 magic squares of cubes.
10x10 and 11x11 magic squares of 4th
powers.
10x10 and 11x11 magic squares of 5th powers.
See also the Magic
squares of cubes general page
In October 2006, some days after the first known 9x9 magic square of cubes, I was pleased to construct the first known 10x10 magic square of cubes:
143 |
933 |
43 |
13 |
23 |
33 |
943 |
303 |
93 |
963 |
863 |
543 |
53 |
903 |
803 |
263 |
353 |
173 |
653 |
563 |
193 |
133 |
873 |
773 |
233 |
153 |
593 |
913 |
313 |
753 |
213 |
473 |
693 |
273 |
443 |
993 |
463 |
643 |
673 |
723 |
1003 |
453 |
343 |
283 |
603 |
83 |
533 |
813 |
793 |
203 |
413 |
103 |
893 |
743 |
513 |
613 |
163 |
823 |
683 |
523 |
403 |
783 |
713 |
73 |
383 |
223 |
853 |
183 |
953 |
483 |
333 |
973 |
493 |
923 |
293 |
363 |
573 |
623 |
253 |
583 |
763 |
113 |
63 |
433 |
983 |
883 |
323 |
373 |
633 |
423 |
663 |
123 |
703 |
393 |
833 |
843 |
733 |
503 |
243 |
553 |
And in November 2006, I constructed the first known 11x11 magic square of cubes:
363 |
843 |
333 |
113 |
633 |
1003 |
923 |
1193 |
23 |
653 |
663 |
513 |
343 |
313 |
763 |
243 |
883 |
373 |
143 |
1153 |
1053 |
963 |
743 |
573 |
1063 |
353 |
83 |
1033 |
323 |
623 |
583 |
203 |
1163 |
863 |
783 |
223 |
873 |
183 |
103 |
703 |
1213 |
973 |
393 |
433 |
1093 |
793 |
643 |
1133 |
493 |
553 |
253 |
673 |
123 |
33 |
953 |
53 |
213 |
503 |
563 |
693 |
13 |
933 |
723 |
993 |
1073 |
983 |
593 |
153 |
753 |
1023 |
713 |
413 |
1183 |
173 |
193 |
1013 |
533 |
423 |
1123 |
853 |
733 |
1103 |
43 |
943 |
543 |
403 |
133 |
443 |
813 |
283 |
913 |
273 |
1113 |
1083 |
603 |
63 |
823 |
613 |
163 |
1173 |
73 |
303 |
263 |
1043 |
833 |
463 |
683 |
903 |
773 |
233 |
293 |
1203 |
1143 |
893 |
383 |
483 |
523 |
473 |
93 |
803 |
453 |
March 2018, Nicolas Rouanet, France, constructed this 10x10 (and also a 12x12) nearly-magic square of consecutive 4th powers, from 1^4 to 100^4:
444 |
374 |
184 |
524 |
824 |
874 |
254 |
854 |
734 |
544 |
24 |
774 |
744 |
954 |
74 |
144 |
264 |
344 |
834 |
554 |
354 |
124 |
634 |
174 |
134 |
364 |
924 |
484 |
604 |
994 |
14 |
594 |
904 |
864 |
284 |
314 |
104 |
574 |
884 |
274 |
814 |
1004 |
534 |
224 |
654 |
464 |
514 |
644 |
474 |
424 |
684 |
624 |
294 |
794 |
454 |
764 |
584 |
394 |
154 |
944 |
894 |
194 |
404 |
164 |
724 |
934 |
334 |
704 |
564 |
414 |
204 |
64 |
914 |
674 |
714 |
304 |
974 |
114 |
324 |
244 |
694 |
804 |
44 |
54 |
964 |
94 |
664 |
234 |
784 |
214 |
844 |
34 |
614 |
384 |
84 |
754 |
494 |
984 |
434 |
504 |
Nicolas Rouanet remarked, using modulo 5 reasoning, that an 11x11 magic (or semi-magic) square is impossible using consecutive 4th powers, from 1^4 to 121^4.
Return to the home page http://www.multimagie.com